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ABSTRACT
In  today’s  ASIC  market  validating  a  VLSI  design  in  a  field
programmable gate array (FPGA) device before tape out can save
a significant amount of time and therefore, money up front in the
design  process.  At  the  University  of  California,  Davis,  we  are
working  on  the  design  of  a  highly  parallel,  reconfigurable
processor  chip,  known  as  the  Asynchronous  Array  of  simple
Processors  (AsAP).   This  report  will  summarize  my  design
approach  and  results  in  both  implementing  and  validating  the
AsAP processor in a Xilinx Spartan 3 FPGA.  

Categories and Subject Descriptors
B.7.1  [ASIC]:  Features  –  VLSI  (very  large  scale  integration),
Microprocessors and microcomputers. 

General Terms
Performance, Design.

Keywords
Reconfigurable, array of processors, energy-efficient.

1. INTRODUCTION
The  VLSI  Computation  Laboratory  (VCL)  at  UC  Davis  is
currently  working  on  the  design  of  a  highly  parallel,
reconfigurable processor chip,  referred to as AsAP.  The AsAP
processor design will eventually be fabricated into an ASIC chip.
However, before the AsAP is fabricated in silicon a more cost-
effective  solution  will  be  tried;  the  same  design  will  be
implemented in an FPGA in order  to prove its feasibility.  The
fabricated  AsAP  chip  will  contain  hundreds  of  independent
processors  that  can  be  reconfigured  to  a  chosen  algorithm or
application. An appropriate example application is a 16-tap FIR
filter.[1]  The first FPGA implementation will be of a single AsAP
processor interacting with outside data sources. 

2. AsAP DESIGN FLOW
The AsAP design flow consists of two main paths: simulation and
synthesis. The following two sections provide a description of the
steps involved in designing with the AsAP processor.

2.1 Simulation Design Flow
The AsAP simulation design flow (see Figure 1) consists of the
following steps:

1. Write AsAP Verilog HDL code.
2. Write AsAP assembly code for each processor.
3. Write AsAP configuration file.

- Define  the  configuration  settings  for  each
processor. For example, clock frequency and
memory contents.

4. Write AsAP chip file.
- Define X by Y processor  array size  of  chip

and input/output direction for each processor.
5. Write AsAP input data file for simulation stimulus.
6. Generate imem.dat and cmem.dat files.
7. Simulate AsAP processor using either NC-Verilog

or ModelSim. 
- Verify  functionality  of  AsAP processor  and

the assembly code.

The AsAP simulation design flow is simplified by the use of make
files and Perl scripts to automate the intensive steps of the design
process.

2.2 Synthesis Design Flow
The AsAP synthesis  design flow (see Figure  1)  consists  of  the
preceding simulation steps, with the following:

1. Synthesize  design  using  either  Synopsys’  Design
Compiler,  Synplicity’s  Synplify  Pro,  or  Xilinx’
XST Synthesis tools.
- Define clock and pinout constraints.

2. Translate, map, and place & route AsAP processor
using Xilinx ISE 6.3i design tools.
- Define timing ignore, timing groups, and any

device specific constraints.
3. Generate programming bit file.

The  AsAP  synthesis  design  flow  is  simplified  by  the  use  of
Windows batch files, Tcl scripts, and Perl scripts to automate the
intensive steps of the design process. 
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3. PROJECT DESIGN APPROACH
3.1 Block Diagram
The  block  diagram  in  Figure  2  illustrates  the  AsAP  single
processor implementation as it would appear in a fabricated ASIC
chip:

Due to limitations of FPGAs some compromises had to be made
during  the  validation  and  implementation  processes.  These
compromises were as follows:

• The programmable clock oscillator was removed.
- AsAP driven by external clock input.

• All configuration registers were hard coded.
- Essentially removing the configuration block. 

• Instruction and data memories were pre-loaded

The  block  diagram  of  the  AsAP  Single  Processor  FPGA
implementation can be seen in Figure 3 below:

3.2 Verilog HDL Implementation
When I started the validation and FPGA implementation of the
AsAP  processor,  a  Verilog  HDL  design  had  already  existed.
However,  the  existing  code  was  not  written  with  the  possible
FPGA implementation in mind.  My task was to carefully mold
into shape, such that it would fit neatly into an FPGA.  The main
pieces of code that were modified, due to FPGA limitations, were
the compromises listed in section 3.1. 

The AsAP’s programmable clock oscillator had to be eliminated
from the FPGA implementation, as a result of the FPGA’s global
clock tree construction.   I therefore bypassed the programmable
oscillator and tied the CPU clock to the external clock input of the
AsAP  processor.   The  purpose  of  the  programmable  clock
oscillator  in  the  AsAP  architecture  is  to  have  the  ability  to
generate different CPU clocks for different processors.  Since this
FPGA  implementation  is  for  a  single  processor  only,  the
elimination of the programmable oscillator is not too large of a
compromise.   The  two  input  FIFOs  still  contain  there
asynchronous clock inputs, so the asynchronous operation of the
AsAP architecture remains in tact.  As a result of bypassing the
programmable oscillator,  the Verilog HDL programmable clock
oscillator  module  was  almost  completely  optimized  out  of  the
design during synthesis. The only logic remaining in the module
was the buffer that tied the external clock input to the CPU clock.

Figure 3. AsAP Single Processor FPGA Implementation
block diagram.

Figure 1. AsAP Simulation/Synthesis Design Flow diagram.

Figure 2. AsAP Single Processor ASIC implementation block
diagram.



Since no method existed at the time of this project to stream live
configuration data to the AsAP processor within the FPGA, it was
necessary to hard code the configuration registers.  There were a
total of twenty single-bit and multi-bit configuration registers.  As
a result the Verilog HDL configuration module was optimized out
of the AsAP processor design during synthesis.

                                                                                 
Both the instruction and data memories mapped well to the Block
RAM located inside the Xilinx Spartan 3 FPGA. The Block RAM
contains  16,384  bits of data memory.  The instruction  memory
was organized as 32-bits wide x 512 words deep; however, the
AsAP processor only uses a 32-bits wide x 64 word deep memory.
Therefore the excess words are left unused.  The data memory was
organized as 16-bits wide x 1024 words deep; however, the AsAP
processor only uses a 16-bits wide x 128 word deep memory.  As
with the  instruction memory, the excess  words are left  unused.
Both  the  instruction  and  data  memories  were  initialized  using
synthesis attributes in the Verilog HDL code.  The Verilog HDL
defparam keyword  was  used  for  simulation.   Initializing  the
memories  in  the  Verilog  HDL code allowed for  the  project  to
progress.  

3.3 Simulation Results
Simulation of the single AsAP processor was necessary to ensure
the same functionality of the synthesizable design as the original
Verilog HDL design.  To simulate the AsAP design I used both
the NC-Verilog simulator and the SimVision waveform viewer.
The following is the AsAP assembly code that I used to simulate
the design:

begin 0,0
MOVE dcmem 18 #1 nop3 // set OBUF to east, wait 3 cycles
NOP nop2  // wait 2 more cycles
RPT #0 // repeat forever
NOP nop2
ADD Obuf Ibuf0 SMem 0
end

This assembly code simply adds 1 to the input data and passes the
result to the output.  After simulating the two designs, 
I discovered the designs were equivalent.  Figures 4 and 5 show
simulation results of both designs.

.

The critical simulation tasks for this project were to verify that the
synthesizable AsAP design functioned with both the hard-coded
configuration  registers  and  the  new  Block  RAMs  for  the
instruction and data memories.  As can be seen in Figure 5, the
synthesizable design functions correctly.

3.4 FPGA Identification
Many factors were evaluated during the process of choosing an
FPGA for the  validation  and implementation  of a single AsAP
processor.  The main factors involved were area requirements for
the single AsAP processor, FPGA speed, and FPGA development
board cost and availability.  To estimate the area requirements I
ran a preliminary place & route after the modifications were made
to the AsAP Verilog HDL design.  The slice count estimate from
the Xilinx ISE 6.3i tools was 1,676.  Due to the small working
budget, I chose to use the Spartan-3 Starter Kit from Digilent, Inc.
and  Xilinx,  Inc..  The  starter  kit  used  an  XC3S200  containing
1,920  slices.   The  XC3S200  could  also  be  run  at  a  maximum
clock rate of 326 MHz.[2]    The single AsAP processor used 87%
of the XC3S200 Spartan 3 FPGA.  As a general design rule, I try
not to use more than 75% of an FPGA for any design. Using more
than 75% of an FPGA reduces the flexibility to modify a design as
it matures and bugs are discovered. Unfortunately, using a larger
FPGA was not feasible due to budgetary reasons.

Table 1. Comparison of evaluation factors.

Xilinx Development Kits[3]

Description # of
Slices Price ($)

Virtex-2 Pro FF1152 P20 Development Kit 9,280 1,595.00
Virtex-2 Pro P4 Development Kit 3,008 895.00
Spartan-3 Development Kit 13,312 749.00
Spartan-3 MB 3S1500 Development Kit 13,312 695.00
Virtex-2 MB 2V1000 Development Kit 5,120 595.00
Virtex-2 DSP Design Kit (XC2V1000) 5,120 400.00
Virtex-2 LC1000 Development Kit 5,120 395.00
Spartan-3 Starter Kit (XC3S200) 1,920 99.00

Figure 4. AsAP Single Processor ASIC simulation.



3.5 AsAP FPGA Implementation
To synthesize the AsAP design I used Synplicity’s Synplify Pro
software.  To translate, map, and place & route the design I used
Xilinx’ ISE 6.3i software. The Synplify Pro tool synthesizes the
Verilog HDL design to an Electronic Design Interchange Format
(EDIF) netlist,  which is used by the Xilinx translate tool.   The
Xilinx translate tool then reads in the EDIF file and generates a
new  file  that  describes  the  logical  design  in  terms  of  logic
elements such as AND gates, OR gates, decoders, flip-flops, and
RAMs. 

During the synthesis process I was able to evaluate the RTL and
Technology design views.  The evaluation consisted of ensuring
that unintentional latches were not inferred, checking the inferred
Xilinx primitives, and evaluating the critical path of the design.
Analyzing  the  technology  view  I  discovered  that  I  needed  to
instantiate a signed multiplier,  rather than rely on the synthesis
tool,  to  infer the correct Xilinx primitive.  Upon re-coding the
multiply-accumulate  (MAC) module,  the  signed  multiplier  was
properly synthesized by Synplify Pro.

During  the  translate,  mapping,  and  place  &  route  process  I
discovered that the design was not meeting my timing constraint
of 100 MHz.  At first I investigated the possibility of adding extra
pipeline stages to improve the timing of the design.  Even though
the added  pipeline  stages  improved the  timing of  the  design I
realized I could find better ways to improve timing.  Using the
Xilinx Timing Analyzer I discovered the place & route tool was
trying to push the configuration clock to operate at the specified
global  timing  constraint  set  by  the  synthesis  tool.   The
configuration clock is used by the instruction memory module to
transfer  data  to  the  data  memory when necessary,  and  is  only
running at 1 MHz.  To mitigate this timing issue I placed a timing
ignore constraint on the portion of the design operating on the 1
MHz  configuration  clock.   The  initial  design  only  achieved  a
maximum operating  clock  frequency  of  ~52.7  MHz,  but  after
adding  proper  constraints  the  design  achieved  a  maximum
operating frequency of ~201.9 MHz.

At the time of my project presentation, I was only using a single
clock to operate the entire single AsAP processor.  I have since
utilized one of the digital clock managers (DCM) in the Spartan 3
FPGA to  generate  a  90º  out-of-phase  clock  to  drive  the  input
FIFO, thus  completely testing the  dual  clock input  FIFO.  The
DCM was also used to generate the 200 MHz external clock input

used during initial  hardware tests.   The final  implementation of
the  AsAP  single  processor  design  produced  the  following
mapping results:

Target Device  : x3s200 (Xilinx Spartan 3)
Target Package : ft256, Target Speed   : -4
Logic Utilization:
  Number of Slice Flip Flops:   1,148 out of   3,840   29%
  Number of 4 input LUTs:       2,222 out of   3,840   57%
Logic Distribution:
  Number of occupied Slices:    1,670 out of   1,920    86%
  Total Number 4 input LUTs:   2,390 out of   3,840   62%
  Number used as logic:             2,222
  Number used as a route-thru:       21
  Number used for Dual Port RAMs: 128
  Number of Block RAMs:             3 out of      12   25%
  Number of MULT18X18s:          1 out of      12     8%
  Number of GCLKs:                      4 out of       8   50%
  Number of DCMs:                       1 out of        4   25%

3.6 AsAP Hardware Validation
The  single  AsAP  processor  design  was  validated  under  the
following test conditions:

Test program: add 1 to the input 16-bit data stream.
AsAP clock rate:  50MHz

- Initial  tests  ran  at  200MHz,  but  due  to
limitations of pc board design clock rate was
reduced to 50MHz.

Input data set by a bank of 8 slide-switches.
- asap_input[15:0] = {sw[7:0],sw[7:0]}.

Configuration hard-coded.
- Input multiplexer selects, oscillator frequency,

instruction memory, data memory.

Figure 6 shows the hardware test setup for validating the design.
An  Agilent  Technologies  1.5  GHz  /  5  GSa/s  Infiniium
Oscilloscope was used to measure both the output clock and the
output data’s least significant bit (LSB). Screen shots of the single
AsAP processor’s results are shown in Figures 7 and 8.  Figure 7
displays the result of adding 1 to a 16-bit input value of zero, and
Figure 8 shows the result of adding 1 to a 16-bit input value of 1.

Figure 5. AsAP Single Processor FPGA simulation.



Figure 7. Result of adding 1 to an input value of zero.

Figure 6. AsAP Single Processor HW Test Setup.



The hardware validation of the single AsAP processor design was
very successful, and there were few problems encountered during
this process.  The problems that did arise, were unrelated to the
AsAP  processor  design.   During  the  validation  process  I
discovered a problem with the Digilent,  Inc.’s Spartan 3 Starter
Kit board; it was exhibiting severe signal integrity issues.  While
the AsAP processor was operating at 200 MHz, the 16-bit AsAP
output signals showed a DC offset of ~200 mV.  To eliminate the
excessive DC offset I slowed the AsAP external clock input down
to 50 MHz.  A possible reason for the elimination of the DC offset
at a 50 MHz clock rate could be that the Starter Kit board was
designed with a 50 MHz clock oscillator.  

4. FUTURE ENHANCEMENTS
For future implementations of the AsAP processor, the following
is a list of possible ideas to help improve the overall results:

1. Design a method for streaming live configuration
data  to  the  AsAP processor  after  the  FPGA has
been configured.

a. Possible  methods  are  to  design  a
UART/RS-232 FIFO interface.

2. Design  a  custom PC board  with  a  large  enough
FPGA to implement multi-processor arrays.

a. Route PCB traces using matched length,
controlled impedance transmission lines.

b. Provide  high-performance  peripheral
devices  (e.g.,  High-Speed  A/D  and
D/A’s,  Video  Outputs,  SDRAM,  and  a
serial I/O interface).

5. CONCLUSION
Overall, the hardware implementation and validation of the single
AsAP processor design was very successful.  The AsAP processor
in the FPGA performed the programmed addition and the results
agreed  with  the  simulation  shown in  section  3.3.   In  addition,
improvements were made to  the  current  AsAP design that  will
benefit the final ASIC implementation.

6. ACKNOWLEDGMENTS
I would like to thank Professor Bevan Baas and the entire AsAP
design  team  for  their  help  in  learning  more  about  the  AsAP
processor. I would also like to thank my loving wife for helping
me with the editing of this project report.

7. REFERENCES
[1] Jeremy W. Webb, "UC Davis AsAP FPGA Implementation,"

In EEC 289Q: Reconfigurable Computing, ECE Department,
University of California, Davis, October 2004.

[2] “Spartan-3 FPGA Family: Introduction and Ordering      
Information”. DS099-1. Xilinx, Inc., (July 13, 2004), 1.

[3] “http://www.ece.ucdavis.edu/~jwwebb/asap_demo_boards.html”,
Webb, Jeremy W., 2004. 

Figure 8. Result of adding 1 to an input value of one.


