Unleashing the Power of the Command-Line Interface

Jeremy W. Webb
Senior Design Engineer

Centellax, Inc.
Santa Rosa, CA USA

www.centellax.com

ABSTRACT

The development of complex ASIC or FPGA designs involving multiple teams and loosely inte-
grated tools is an arduous process. There is an inherent challenge in maintaining coherency and
separation of source and generated files throughout the build process, particularly through dif-
ferent tool versions and vendors. These aspects of the development process make results hard to
reproduce, reuse, and share. This paper highlights the benefits of a command-line-based build
environment as an alternative to using graphical user interfaces (GUIs) for RTL development. A
well-reasoned directory structure for projects is proposed, as well as a template for command-
line integration of ASIC or FPGA development tools.

Table of Contents

ISR 11 oo L1 T £ [o PSSR 3
2. DESIGN HIEBTAICNYeiiicie ettt e et e te e te et e nneesreenee e 4
3. SYNENESIS FIOW ...ttt bbb 7
4. FPGA Implementation FIOW..........ccoiioiiiie e 12
5. TRAM DBSIGN ...ttt b bttt bbb 17
6. BUIA ENVIFONMENT.....c.iiiiiiiieiec et bbbttt sb bbb nneas 18
A @70 o] 131 [] o OSSR 18
B, REIBIBINCESi ittt ettt bbb e reas 18
Table of Figures
Figure 1 Hierarchal DireCtory STFUCTUIEcoueiiiiiiiiiiiii ittt 4
Table of Listings
Listing 1.1 Example Synthesis Command-Line FIOWcccccovviiiie i 3
Listing 3.1 Synthesis Tl File Parser SCHPL.........cocooiiiiiiiiieiciee e 8
Listing 3.2 Synthesis Top-Level MaKefile...........coooiiiiiiiiiiccc e 9
Listing 3.3 SYNLESIS TCI FIlE ...c..ooueiieicece e 10
Listing 4.1 Place and Route Top-Level Makefile ... 13
Listing 4.2 Place and Route XilinX MaKefile...........ccooviiiiiiiiiccece e 14
Listing 5.1 Git .QItIgNOre FIle ..o s 17

SNUG 2012 2 Unleashing the Power of the Command-Line Interface

1. Introduction

Developing complex ASIC or FPGA designs involving multiple teams and loosely integrated
tools is a complex endeavor. While each tool used in the ASIC or FPGA build process typically
has an integrated development environment (IDE) intended to tie front-end and back-end tools
together, they can be difficult to set up. Back-end tools attempt to integrate the front-end tools
into their flow, and vice-versa. Fortunately, these tools provide a method of controlling the flow
using a command-line interface (CLI). Using custom Makefiles and scripts in a well-reasoned
directory structure allows for the designer to leverage the strengths of each tool via the CLI used
in the build process. Employing a hierarchical RTL design can further improve the design effi-
ciency and fosters a team design flow. Listing 1.1 shows an example synthesis flow initiated
from the command-line interface using a Makefile.

Listing 1.1 Example Synthesis Command-Line Flow

[iwwebb@darthbane ~]

$ cd ~/snug/git/myfpga/par/bin/
[jwwebb@darthbane ../git/myfpga/par/bin]
$ make setup

Executing: make setup
[jwwebb@darthbane ../git/myfpga/par/bin]
$ make synthesize

Executing: make synthesize

Launch Synplify Pro

.[..Isrc/myfpga/myfpga.sv ../../src/in_buf/in_buf.sv ../../src/out_buf/out_buf.sv ../../src/reg_if/reg_if.sv ../../src/sys_rst/sys_rst.sv
..[..Isrc/sync_2stage/sync_2stage.sv ../../src/sync_rst/sync_rst.sv ../../src/sys_dcm/sys_dcm.sv ../../src/adc_ctrl/adc_ctrl.sv
.[I..Isrc/mem_block/mem_block.sv ../../src/ad7928_adc/ad7928 adc.sv ../run/reg_defines.h

../bin/outarch.sh myfpga ../log ../out ../run

* myfpga.edf and myfpga.ncf do not exist.

* Clean up log directories...

synplify_pro -batch ../bin/myfpga.tcl

Loading ../bin/synhooks.tcl

Starting: /opt/synopsys/fpga_f201109/linux_a_64/mbin/synbatch
Version: F-2011.09

Arguments: -product synplify_pro -batch ../bin/myfpga.tcl
ProductType: synplify_pro

Running proj_1|log

Job flow Compile Process completed on proj_1|log
Running Premap on proj_1|log

Job flow Compile completed on proj_1|log

Running Map on proj_1|log

Job flow Map completed on proj_1|log

Running Place and Route Post-Synthesis on proj_1|log
Job flow Logic Synthesis completed on proj_1|log

Job flow proj_1|rev_1 completed on proj_1jrev_1

TCL script complete: "../bin/myfpga.tcl”

exit status=0

Synplify Pro completed.

SNUG 2012 3 Unleashing the Power of the Command-Line Interface

2. Design Hierarchy

Whether creating a new design or leveraging an existing one, maintaining coherency and separa-
tion of source and generated files in a flat or semi-hierarchical directory structure can be diffi-
cult. Employing a hierarchical directory structure with a clearly defined location for source files,
simulation projects, synthesis builds, place and route builds, and other miscellaneous files can
improve the efficiency of the design process. Figure 1 shows a recommended directory hierarchy
for either an FPGA or ASIC RTL design. The creation of the directory hierarchy can be auto-
mated with Perl or bash shell scripts.

Figure 1 Hierarchal Directory Structure

myfpga/ Top level directory of a design.
cfg/ Configuration files.
doc/ Specification and Design documents.
misc/ Put datasheets, IP core generation, and other documents.
sre/ Put RTL source here.
<modulename>/
doc/ Put module related documentation here.
sim/ Top level simulations directory.
syn/ Synthesis directory.
sw/ Software or script files.
syn/ Synthesis directory.
bin/ For synthesis scripts.
log/ Log files (including reports).
out/ For generated netlists and EDIF files.
run/ For running synthesis scripts.
src/ Special sources for synthesis.
par/ Build directory.
archive/ For archiving builds.
bin/ For build scripts.
log/ Log files (including reports).
out/. For generated netlists and config files.
run/ For running build scripts.
sre/ Special sources for build (pin out file).

SNUG 2012 4 Unleashing the Power of the Command-Line Interface

2.1. Configuration Directory

The configuration (cfg) directory is intended to store the FPGA configuration files generated by
the back-end FPGA place and route tools. For example, a printed circuit (PC) board design em-
ploying a Xilinx FPGA and a serial peripheral interface (SPI) electrically erasable programmable
read-only memory (EEPROM) would require both a bit file and an mcs file to configure each
device. These files would be stored in the cfg directory.

2.2. Documentation Directory

The documentation (doc) directory is intended to store design specification documents, block
diagrams, control scripts, and other important design documents.

2.3. Miscellaneous Directory

The miscellaneous (misc) directory is intended to store IP core generation projects, peripheral
manufacturer’s data sheets, and back-end planning tool projects. For example, when defining
constraints for a Xilinx FPGA design, a PlanAhead" project can be created and stored in the

misc directory.

2.4. RTL Source Directory

The RTL (src) directory is intended to store all of the design source files. Ideally, each RTL
module or sub-circuit would reside in its own directory. A typical module directory contains the
following:

doc - module specific documentation
sim - module simulation project

sw - module software or scripts

syn - module synthesis project

In the case of simple RTL modules, the sub-directories within the module directory can be omit-
ted. An RTL module containing only 1/O buffer instantiations, for example, is simple enough to
not require documentation, simulation, software or synthesis sub-directories.

SNUG 2012 5 Unleashing the Power of the Command-Line Interface

Module Document Directory

The module documentation (doc) directory is intended to store RTL module specific documenta-
tion. The data sheet or user guide of a module generated using an FPGA IP core generation tool
could be stored in the doc directory.

Module Simulation Directory

The module simulation (sim) directory is intended to store the RTL and gate level simulation
projects. ASIC designs will contain both an RTL and gate-level simulation directory, whereas an
FPGA design will typically only contain a gate-level simulation directory for the top-level mod-
ule. The FPGA design equivalent of an ASIC gate-level simulation would be a post-place and
route simulation, which uses a top-level RTL module generated by the FPGA back-end tools.

Module Software Directory

The module software (sw) directory is intended to store software files, whether they are Perl
scripts, Bash scripts, Matlab programs, or C programs that aid in the design and verification of
the RTL module.

Module Synthesis Directory

The module synthesis (syn) directory is intended to store a synthesis project for evaluating the
gate count and power performance of an RTL module. In addition, it can provide a means of
evaluating the equivalent gate-level schematic of the RTL module. For example, Synopsys
FPGA can be used to synthesize an RTL module and evaluate both the gate level and FPGA de-
vice specific schematics.

2.5. Synthesis Directory

The top-level synthesis (syn) directory is intended to store a synthesis project for generating an
electronic design interchange format (EDIF) net list file for the RTL design, which can be used
by either the ASIC or FPGA back-end tools. Additionally, it can provide a means of evaluating
the equivalent gate-level schematic of the RTL design. The synthesis directory contains the fol-
lowing:

bin - synthesis scripts

log - log and report files

out - generated net lists and EDIF files
run - synthesis project directory

src - synthesis constraint files

SNUG 2012 6 Unleashing the Power of the Command-Line Interface

2.6. Place and Route Directory

The top-level place and route (par) directory is intended to store an ASIC or FPGA back-end
project. In the case of FPGA designs, this directory would store a Makefile driven tool flow for
translating the EDIF net list file, mapping, place and route, and generating configuration files.
The synthesis directory contains the following:

archive - archives of past builds
bin - Makefiles and scripts

log - log and report files

out - generated configuration files
run - par build directory

src - par constraint files

3. Synthesis Flow

The Synopsys advanced FPGA synthesis tools, Synplify Pro™ and Synplify Premier’", provide a
Tcl scripting interface which allows the tools to be controlled via the command-line interface.
The synthesis build is facilitated by three scripts which are stored in the ../myfpga/syn/bin/ direc-
tory:

o Makefile
e parsetcl.sh
e outarch.sh

The synthesis build is initiated by executing the “synthesize” target of the Makefile shown in
Listing 3.2. Typically, Make is provided with a list of source files which are used during the
build flow. Maintaining the list of source files in both the Makefile and the project Tcl file can be
troublesome and prone to error. This problem can be solved by using a bash shell script to auto-
mate the file list generation. An example bash shell script called parsetcl.sh, shown in Listing
3.1, is used by the Makefile to determine which source files in the directory hierarchy have
changed and when a synthesis build can be performed. The parsetcl.sh bash shell script searches
the project Tcl file (myfpga.tcl shown in Listing 3.3) for the add_file keyword, and concatenates
the source file paths into a continuous string which is assigned to the SRCS variable in the Ma-
kefile. The first step of the synthesis build is to execute the outarch.sh bash shell script, which
archives and cleans the log, out, and run directories. The next step is to launch the synthesis tool
in batch mode using the project Tcl file.

The actual synthesis takes place within the ../myfpga/syn/run/ directory, and the report and log
files are stored in the ../myfpga/syn/log/ directory. Upon completion of synthesis, the EDIF and
NCEF files are stored in both the ../myfpga/syn/out/ and ../myfpga/par/run/ directories using call-
back functions stored in the ../myfpga/syn/bin/synhooks.tcl file. In order to use callback func-
tions in a synthesis flow, the SYN_TCL_HOOKS environment variable must be assigned the
name and location of the synhooks.tcl file.

In addition to the project Tcl file, a constraints file can be used in the batch synthesis flow to
provide a variety of design related constraints, including clock, 1/O delay, register, attributes, and

SNUG 2012 7 Unleashing the Power of the Command-Line Interface

I/O standards. The design constraint file can be created either manually in a text editor, or by
using the synthesis constraint optimization environment (SCOPE) tool. When used with the RTL
view of the HDL Analyst tool, the SCOPE tool allows specific nets to be dragged and dropped
into a spreadsheet-like interface. When starting a new design, the constraint file can be omitted
from the project Tcl file during the first synthesis build; the constraint file can be created after
the build is completed by opening the Synplify GUI from within the ../myfpga/syn/run/ directory
and using the SCOPE and HDL Analyst tools as described above. Once the constraints file has
been created, it can be added to the project Tcl file as shown in Listing 3.3.

Listing 3.1 Synthesis Tcl File Parser Script

#!/bin/sh

#
#
parsetcl.sh module
#

#
Source/Include File TCL Parser

#

This utility is intended to parse a Synplify Pro TCL file and extract the source file
names with file paths for use by the Makefile. This will allow the Makefile to only
re-generate the EDIF if the source files have changed.

#

#

PROJECTNAME=$1

Copy the Synplify Pro project TCL file:
cp SPROJECTNAME .tcl foo

Extract the source files from the Synplify Pro project TCL file:
grep "add_file -verilog" foo > tmp
grep "add_file -_include" foo >> tmp

Remove all but source file paths.
sed -e "s/ME*$/M\

-e "s\"$//" \

-e s/~ *unisim.v$/" \

-e "/"$/d" \

-e "s/add_file -verilog.*\"//" \

-e "s/add_file -_include \"//" tmp > bar

cat -s bar
rm -f foo tmp bar

SNUG 2012 8 Unleashing the Power of the Command-Line Interface

Listing 3.2 Synthesis Top-Level Makefile

#
#

Synthesis Makefile
#

#
<Design Name>

#

This is the top-level synthesis Makefile, which synthesizes the RTL source code for

the FPGA design. This Makefile references the RTL source directory for extracting the
files during synthesis. This Makefile must be run from within the bin directory: "./bin".
All results from the build are stored in the out directory.

#

#

Project Name:
PROJNAME := myfpga

Directory Variables:
PROJDIR :=..

SRCDIR :=$(PROJDIR)/src
BINDIR :=$(PROJDIR)/bin
LOGDIR :=$(PROJDIR)/log
OUTDIR :=$(PROJDIR)/out
RUNDIR :=$(PROJDIR)/run
CODEDIR :=.././src

Synplify Pro Variables:

SYNPLIFY :=synplify_pro

TCLFILE := $(BINDIR)/$(PROJNAME).tcl
SYNTHFILE := $(OUTDIR)/$(PROINAME).edf
NCFFILE := $(OUTDIR)/$(PROJNAME).ncf

Source Code:
SRCS :=$(shell $(BINDIR)/parsetcl.sh $(PROINAME))
INDEX=$(SRCS)

Environment Variables:
export SYN_TCL_HOOKS=../bin/synhooks.tcl

default:
@echo "** Synthesis
@echo "targets:"
@echo " make synthesize - synthesize chip"
@echo " make clean - clean current build folder"
@echo

synthesize : $(SYNTHFILE)

$(SYNTHFILE) : $(INDEX)

@echo

@echo" Launch Synplify Pro"
@echo

@echo "$(INDEX)"

@echo

$(BINDIR)/outarch.sh $(PROJINAME) $(LOGDIR) $(OUTDIR) $(RUNDIR)
$(SYNPLIFY) -batch $(TCLFILE)

@echo
@echo " Synplify Pro completed.”
@echo

clean :
@echo
@echo" Clean up synthesis directories"
@echo
$(BINDIR)/outarch.sh $(PROJINAME) $(LOGDIR) $(OUTDIR) $(RUNDIR)

SNUG 2012 9 Unleashing the Power of the Command-Line Interface

Listing 3.3 Synthesis Tcl File

#
#
myfpga.tcl module
#

#
<Design Name>

#

This TCL file sets up SynplifyPro, and synthesizes the FPGA design. This script
generates an EDIF file named: myfpga.edf.

#

#
project —new

set TECHNOLOGY “Virtex6”
set PART “XC6VLX195T”
set PKG “FF784”

#
#** Xilinx Library

#
add_file -verilog "$LI1B/xilinx/unisim.v"

#
#** Top-Level Module

#

add_file -verilog "../../src/myfpga/myfpga.sv"
#

#** Sub-Module(s)
#

#
#** Input/Output Buffers

#
add_file -verilog "../../src/in_buf/in_buf.sv"
add_file -verilog "../../src/out_buf/out_buf.sv"

#
#** Constraints

#
add_file -constraint "../src/myfpga.sdc"

#implementation: "rev_1"
impl -add "../log"

#implementation attributes
set_option -vlog_std sysv
set_option -project_relative_includes 1

#par_1 attributes

set_option -job par_1 -add par

set_option -job par_1 -option run_backannotation 0
impl -active "log"

#device options

set_option -technology $TECHNOLOGY
set_option -part SPART

set_option -package $PKG

set_option -speed_grade -2

set_option -part_companion "

#compilation/mapping options
set_option -use_fsm_explorer 0
set_option -top_module "myfpga"

mapper_options
set_option -frequency auto
set_option -write_verilog 0
set_option -write_vhdl 0

SNUG 2012 10

Unleashing the Power of the Command-Line Interface

Xilinx Virtex6

set_option -run_prop_extract 1
set_option -maxfan 10000
set_option -disable_io_insertion 0
set_option -pipe 1

set_option -update_models_cp 0
set_option -retiming 1
set_option -no_sequential_opt 0
set_option -fixgatedclocks 3
set_option -fixgeneratedclocks 3
set_option -enable_prepacking 1

NFilter

set_option -popfeed 0
set_option -constprop 0
set_option -createhierarchy 0

sequential_optimization_options
set_option -symbolic_fsm_compiler 1

Compiler Options
set_option -compiler_compatible 0
set_option -resource_sharing 0

#VIF options
set_option -write_vif 1

#automatic place and route (vendor) options
set_option -write_apr_constraint 1

#set result format/file last

project -result_file "myfpga.edf"
project -log_file "../log/myfpga.srr"
project -save "../run/myfpga.prj"
project -run

SNUG 2012

11

Unleashing the Power of the Command-Line Interface

4. FPGA Implementation Flow

The Xilinx ISE Design Suite " is an integrated development environment which is made up of
multiple command-line programs. The FPGA implementation flow typically consists of the fol-
lowing steps:

Netlist Translate

Mapping

Place and route

Timing Analysis
Configuration File Generation

Each of these programs generate a considerable number of files. The designer must then sift
through the files in the design directory to determine which files are report files and which are
output files required by the next stage in the FPGA implementation flow. This process can be
simplified by using Makefiles which automatically place report and log files in a log directory
and leave intermediate files in the run directory as the design progresses through the implementa-
tion process. The place and route build is facilitated by three scripts which are stored in the
..Imyfpga/par/bin/ directory:

o Makefile
e par.xilinx.mk
e outarch.sh

The place and route build for the Xilinx FPGA design “myfpga” is initiated by executing the
“setup” and ““all” targets of the Makefile, shown in Listing 4.1, located in the ../myfpga/par/bin/
directory. The “setup” Make target copies the par.xilinx.mk file, shown in Listing 4.2, to the
.Imyfpga/par/run/ directory and renames the file to Makefile. Other than the “archive” Make
target, all remaining Make targets indirectly execute targets of the same name in the Makefile
located in the ../myfpga/par/run directory. The “synthesize” target of the par.xilinx.mk Makefile
indirectly executes the “synthesize” target of the Makefile stored in the ../myfpga/syn/bin/ direc-
tory. Upon completion of the synthesis flow, the EDIF and NCF files are copied into the
.Imyfpga/par/run/ directory, and the remaining Make targets operate on these files. The role of
the par.xilinx.mk Makefile is to organize the files generated during the place and route build
flow. After each Make target is completed, the associated log and output files are stored in the
directories defined in Section 2.6. Using the set of Makefiles shown in Listing 4.1 and Listing
4.2, the steps of the place and route build flow can either be automated or executed one at a time,
as necessary. For example, when using the Xilinx ChipScope Pro Inserter ", the place and route
build flow must be continued from the netlist translate stage.

In addition to the script files, a user constraints file (UCF) must be used in the place and route
build flow in order to achieve the desired performance and functionality. The UCF file contains a
variety of design related constraints, including clock, 1/0 delay, pin assignments, and 1/0 stan-
dards. The design constraint file can be created either manually in a text editor, or by using the
Xilinx PlanAhead™" tool.

SNUG 2012 12 Unleashing the Power of the Command-Line Interface

Listing 4.1 Place and Route Top-Level Makefile

#
#

Place and Route FPGA Makefile

#

#

<Design Name>

#

This is the top-level place and route Makefile, which builds the FPGA design using
back-end tools. This Makefile must be run from within the bin directory: "../par/bin".
All results from the build are stored in the log, out, and run directories. This script is
dedicated to the Xilinx ISE toolset.

#

#

Project Name:
PROJNAME := myfpga

Directory Variables:

PROJDIR :=..

BINDIR :=$(PROJDIR)/bin
LOGDIR :=$(PROJDIR)/log
OUTDIR :=$(PROJDIR)/out
RUNDIR :=$(PROJDIR)/run
SRCDIR :=$(PROJDIR)/src
ARCHDIR := $(PROJDIR)/archive

default:
@echo "** Place and Route Build
@echo "targets:"

@echo " make archive - archive current build"
@echo " make synthesize - synthesize chip"
@echo " make setup - setup build"
@echo " make translate - translate chip"
@echo " make map - map chip"
@echo " make par - par chip"
@echo " make bit - generate bit file"
@echo " make prom - generate prom file"
@echo " make trace - run timing analyzer"
@echo " make sdf - generate post place & route files"
@echo " make download - program entire JTAG chain."
@echo " make all - run all make targets"
@echo " make clean - clean current build folder"
@echo
archive :

Joutarch.sh ${PROINAME} ${LOGDIR} ${OUTDIR} ${RUNDIR} ${SRCDIR} ${ARCHDIR}

setup :
@echo "Executing: make setup"
cp par.xilinx.mk ../run/Makefile
chmod 775 ../run/Makefile

synthesize :
@echo "Executing: make synthesize"
cd ../run; make synthesize

translate :
@echo "Executing: make translate"
cd ../run; make translate

map :
@echo "Executing: make map"
cd ../run; make map

par :
@echo "Executing: make par"
cd ../run; make par

bit :

SNUG 2012 13 Unleashing the Power of the Command-Line Interface

@echo "Executing: make bit"
cd ../run; make bit

prom :
@echo "Executing: make prom"
cd ../run; make prom

trace :
@echo "Executing: make trace"
cd ../run; make trace

sdf :
@echo "Executing: make sdf"
cd ../run; make sdf

download :
@echo "Executing: make download"
cd ../run; make download

all :
@echo "Executing: make all"
cd ../run; make all

clean :
@echo "Executing: make clean"
cd ../run; make clean

Listing 4.2 Place and Route Xilinx Makefile

#
#

Xilinx Place and Route FPGA Makefile
#

#
<Design Name>

#

This is the Xilinx place and route Makefile. The synthesis build is executed in a different

level of the design hierarchy. The resulting EDIF files are copied to the ../par/run/ directory

and used with the Xilinx back-end tools. This Makefile is copied from the ../par/bin/ directory
to the ../par/run/ directory and executed from a top-level place and route Makefile. All results
from the build are stored in the log, out, and run directories. This script is dedicated to the

Xilinx ISE toolset.

#

#

Project Name:
PROJNAME := myfpga
CHIP := XC6VLX195T-FF784-2

Directory Variables:

PROJDIR :=..

COMMONDIR :=../.././common/bin
SRCDIR := $(PROJDIR)/src
BINDIR :=$(PROJDIR)/bin
LOGDIR :=$(PROJDIR)/log
OUTDIR := $(PROJDIR)/out
RUNDIR :=$(PROJDIR)/run
SYNDIR :=$(PROJDIR)/..Isyn
CODEDIR :=./.Isrc

CFGDIR :=./.[cfg

Translate File Variables:

UCF := $(SRCDIR)/$(PROJNAME).ucf

SYNTHFILE := $(RUNDIR)/$(PROJNAME).edf

TRANOPTS := -p $(CHIP) -intstyle silent -uc $(UCF) -sd “<path_to_edif or ngd files>/" -sd "../run/" $(SYNTHFILE) $(PROINAME).ngd

MAP File Variables:

SNUG 2012 14 Unleashing the Power of the Command-Line Interface

MAPOPTS :=-p $(CHIP) —w -logic_opt off -ol high -t 1 -xt 0 -register_duplication off -r 4 -global_opt off -mt 2 —detail \
-ir off -pr b -Ic off -power off -0 map.ncd

PAR File Variables:
PAROPTS :=-w -ol high -mt 2

Bitgen File Variables:

BITOPTS :=-w -m -g DebugBitstream:No -g Binary:no -g CRC:Enable -g ConfigRate:2 -g CclkPin:PullUp -g MOPin:PullNone \

-g M1Pin:PullNone -g M2Pin:PullNone -g ProgPin:PullUp -g InitPin:Pullnone -g CsPin:Pullnone -g DinPin:Pullnone -g BusyPin:Pullnone \
-g RdWrPin:Pullnone -g HswapenPin:PullUp -g TckPin:PullNone -g TdiPin:PullNone -g TdoPin:PullNone -g TmsPin:PullNone \

-g Disable_JTAG:No -g UnusedPin:PullNone -g User|D:0xDEADBEEF -g ConfigFallback:Enable -g BPI_page_size:1 \

-g OverTempPowerDown:Disable -g next_config_addr:None -g JTAG_SysMon:Enable -g DClUpdateMode:Quiet -g StartUpCIk:CClk \

-g DONE_cycle:4 -g GTS_cycle:5 -g GWE_cycle:6 -g Match_cycle:NoWait -g Security:Level2 -g DonePipe:No -g DriveDone:Yes \

-g Encrypt:No

PromGen File Variables:
PROMOPTS :=-u 0x0 $(PROIJNAME).hit -p mcs -0 $(PROINAME).mcs -s 16384 -spi -w

Trace Variables:
TRACEOPTS := -e 3 -1 3 $(PROINAME).ncd $(PROINAME).pcf -xml $(LOGDIR)/$(PROINAME) -0 $(PROINAME).twr

SDF Variables:
SDFOPTS :=-w -ofmt verilog -aka -fn -pcf $(PROINAME).pcf -s 2 -sim -tb -ism -ne -sdf_anno true $(PROJNAME).ncd

Environment Variables:
export SYN_TCL_HOOKS=../hin/synhooks.tcl
export XIL_PAR_DESIGN_CHECK_VERBOSE=1

default:
@echo "** Xilinx Place and Route Build
@echo "targets:"
@echo " make synthesize - synthesize chip"
@echo " make translate - translate chip"

@echo " make map - map chip"
@echo " make par - par chip”
@echo " make bit - generate bit file"
@echo " make prom - generate prom file"
@echo " make trace - run timing analyzer"
@echo " make sdf - generate post place & route files"
@echo " make download - program entire JTAG chain."
@echo " make all - run all make targets"
@echo " make clean - clean current build folder"
@echo
synthesize:
@echo
@echo" Launch Synthesizer"
@echo

cd $(SYNDIR)/bin; make synthesize;
translate : $(PROJNAME).ngd

$(PROIJNAME).ngd : $(SYNTHFILE) $(UCF)
@echo
@echo" Launch NGDBUILD"
@echo
ngdbuild -f $(TRANOPTS) $(SYNTHFILE) $(PROJNAME).ngd
mv $(RUNDIR)/$(PROIJNAME).bld $(LOGDIR)/
mv $(RUNDIR)/netlist.Ist $(LOGDIR)/
cp -f $(RUNDIR)/$(PROIJNAME).log $(LOGDIR)/

map : map.ncd

map.ncd : $(PROIJNAME).ngd
@echo
@echo™ Launch MAP"
@echo
map -f $(MAPOPTS) $(PROJNAME).ngd $(PROJNAME).pcf
mv $(RUNDIR)/map.mrp $(LOGDIR)/
mv $(RUNDIR)/map.map $(LOGDIR)/

SNUG 2012 15 Unleashing the Power of the Command-Line Interface

mv $(RUNDIR)/$(PROJNAME)* xml $(LOGDIR)/
cp -f $(RUNDIR)/$(PROINAME).log $(LOGDIR)/

par : $(PROJNAME).ncd

$(PROINAME).ncd : map.ncd
@echo
@echo " Launch PAR"
@echo
par -f $(PAROPTS) map.ncd $(PROINAME).ncd $(PROIJNAME).pcf
mv $(RUNDIR)/$(PROINAME).unroutes $(LOGDIR)/
mv $(RUNDIR)/$(PROJNAME).pad $(LOGDIR)/
mv $(RUNDIR)/$(PROJNAME).par $(LOGDIR)/
mv $(RUNDIR)/$(PROJNAME).xpi $(LOGDIR)/
mv $(RUNDIR)/$(PROJINAME)_pad.csv $(LOGDIR)/
mv $(RUNDIR)/$(PROINAME)_pad.txt $(LOGDIR)/
cp -f S(RUNDIR)/$(PROINAME).log $(LOGDIR)/

bit : $(PROINAME).bit

$(PROINAME).hit : $(INDEX) $(PROINAME).ncd
@echo
@echo " Launch BITGEN"
@echo
bitgen $(PROINAME).ncd -f $(BITOPTS)
cp $(PROINAME).hit S(OUTDIR)/$(PROINAME).bit
cp $(PROINAME).msk $(OUTDIR)/$(PROINAME).msk
cp $(PROINAME).bit $(CFGDIR)/
cp $(PROINAME).msk $(CFGDIR)/
mv $(RUNDIR)/$(PROJNAME).bgn $(LOGDIR)/
mv $(RUNDIR)/$(PROIJNAME).drc $(LOGDIR)/
mv $(RUNDIR)/$(PROJNAME)*.xml $(LOGDIR)/

prom : $(PROJNAME).mcs

$(PROINAME).mcs : $(PROJNAME).bit
@echo
@echo ™ Launch PROMGEN for SPI PROM"
@echo
promgen -f $(PROMOPTS)
cp $(PROJNAME).mcs $(OUTDIR)/$(PROINAME).mcs
cp $(PROINAME).mcs $(CFGDIR)/$(PROJNAME).mcs
cp $(PROINAME).cfi $(CFGDIR)/$(PROIJNAME).cfi
mv $(PROINAME).prm $(LOGDIR)/$(PROJNAME)_SPI.prm

trace : $(PROJNAME).twr

$(PROINAME).twr : $(PROINAME).ncd
@echo
@echo™ Launch TRACE"
@echo
trce -f $(TRACEOPTS) $(PROINAME).ncd $(PROINAME).pcf -0 $(PROIJNAME).twr
cp $(PROINAME).twr $(LOGDIR)/$(PROIJNAME).twr

sdf : $(PROIJNAME).sdf

$(PROIJNAME).sdf : $(PROINAME).ncd
@echo
@echo " Launch NETGEN"
@echo
netgen -f $(SDFOPTS) $(PROJNAME).ncd
cp $(PROIJNAME).v $(CODEDIR)/$(PROJNAME)/sim/gatesim/bench/$(PROJINAME).v
cp $(PROIJNAME).tv $(CODEDIR)/$(PROJNAME)/sim/gatesim/bench/$(PROJINAME).tv
cp $(PROINAME).sdf $(CODEDIR)/$(PROINAME)/sim/gatesim/bench/$(PROINAME).sdf
mv $(PROINAME).v $(OUTDIR)/
mv $(PROINAME).tv $(OUTDIR)/
mv $(PROINAME).nlf $(LOGDIR)/

download: $(PROJNAME).bit

@echo

SNUG 2012 16 Unleashing the Power of the Command-Line Interface

@echo " Download MCS File to PROM and Bitfile to FPGA"

@echo
impact -batch $(BINDIR)/download.cmd

all : synthesize translate map par trace bit prom

@echo
@echo ™ This build has finished."”

@echo

clean :
rm -f $(PROINAME)*
rm -f map.mrp map.ncd map.ngm netlist.Ist
rm -f *.log

5. Team Design

The design hierarchy described in Chapter 2 fosters a team design flow through its use of unique
sub-directories for each HDL module. The design of the HDL modules can be distributed
amongst team members to be designed, simulated, and synthesized, then committed to a revision
control system, such as Git. This allows each member of the team to receive updates as modules
are completed. Care must be taken to avoid committing intermediate generated files to the revi-
sion control system. Git provides a means of avoiding such a condition by use of a .qgitignore file
placed at the root of the repository. Listing 5.1 shows an example .gitignore file used with the
“myfpga” design. Any files located in the directories shown in Listing 5.1, which were not pre-
viously committed to the repository, will be ignored by Git when staging or adding files to the

repository.

Listing 5.1 Git .gitignore File

.gitignore file

HFoH H H R R

This is the .gitignore file for the <myfpga> git repository.
It defines which files will be ignored by Git.
#

#

#.
Auto-generated Files
#.

.DS_Store
<.Swp

#.

Files generated by FPGA tools
#.

myfpga/par/run/
myfpga/par/log/
myfpga/par/out/
myfpga/syn/bin/*.log
myfpga/syn/run/
myfpga/syn/log/
myfpga/syn/out/

SNUG 2012 17

Unleashing the Power of the Command-Line Interface

6. Build Environment

The synthesis flow and place and route build flow described in this paper are supported on both a
Windows and a Linux operating system. On Windows, the Makefiles and scripts can be executed
in a Cygwin environment along with GNU Make. The Makefiles and scripts are natively sup-
ported on a Linux operating system. The back-end and front-end tools are supported on both op-
erating systems.

7. Conclusion

The suggested directory structure and use of command-line interface scripts and Makefiles can
improve the FPGA or ASIC design efficiency and promotes a team design flow. The design flow
is controlled such that all files generated by both the design team and the tools are stored in a
known location. In turn, this will make debugging a design, either during the build or when
hardware arrives, much more straightforward. The techniques employed in the FPGA implemen-
tation flow can be easily leveraged to an ASIC implementation flow.

8. References

[1] Synopsys FPGA Synthesis User Guide, November 2011.
[2] Xilinx ISE Design Suite 13.3, October 2011.

SNUG 2012 18 Unleashing the Power of the Command-Line Interface

